8 research outputs found

    Impact of peer-to-peer trading and flexibility on local energy systems

    Get PDF
    To meet the 2050 net zero emission targets, energy systems around the globe are being revisited to achieve multi-vector decarbonisation in terms of electricity, transport, heating and cooling. As energy systems become more decentralised and digitised, local energy systems will have greater potential to self-sustain and hence, decrease reliance on fossil-fuelled central generation. While the uptake of electric vehicles, heat pumps, solar and battery systems offer a solution, the increase in electricity demand poses challenges in terms of higher peak demand, imbalance and overloading. Additionally, the current energy market structure prevents these assets in the distribution network from reaching their true techno-economic potential in flexibility services and energy trading. Peer-to-peer energy trading and community-level control algorithms achieve better matching of local demand and supply through the use of transactive energy markets, load shifting and peak shaving techniques. Existing research addresses the challenges of local energy markets and others investigate the effect of increased distributed assets on the network. However, the combined techno-economic effect requires the co-simulation of both market and network levels, coupled with simultaneous system balance, cost and carbon intensity considerations. Using bottom-up coordination and user-centric optimisation, this project investigated the potential of network-aware peer-to-peer trading and community-level control to increase self-sufficiency and self-consumption in energy communities. The techno-economic effects of these strategies are modelled while maintaining user comfort levels and healthy operation of the network and assets. The proposed strategies are evaluated according to their economic benefit, environmental impact and network stress. A case study in Scotland was employed to demonstrate the benefits of peer-to-peer trading and community self-consumption using future projections of demand, generation and storage. Additionally, the concept of energy smart contracts, embedded in blockchains, are proposed and demonstrated to overcome the major challenges of monitoring and contracting. The results indicate benefits for various energy systems stakeholders. Distribution system end-users benefit from lower energy costs while system operators obtain better visibility of the local-level flexibility along with the associated technical challenges in terms of losses, imbalance and loading. From a commercial perspective, community energy companies may utilise this study to inform investment decisions regarding storage, distributed generation and transactive market solutions. Additionally, the insights about the energy smart contracts allow blockchain and relevant technology sectors to recognise the opportunities and challenges of smart contracts and distributed ledger technologies that are specific to the energy sector. On the broader scale, energy system operators, regulators and high-level decision-makers can compare the simulated impact of community-led energy transition on the net zero goals with large-scale top-down initiatives

    PyPSA meets Africa: Developing an open source electricity network model of the African continent

    Get PDF
    Electricity network modelling and grid simulations form a key enabling element for the integration of newer and cleaner technologies such as renewable energy generation and electric vehicles into the existing grid and energy system infrastructure. This paper reviews the models of the African electricity systems and highlights the gaps in the open model landscape. Using PyPSA (an open Power System Analysis package), the paper outlines the pathway to a fully open model and data to increase the transparency in the African electricity system planning. Optimisation and modelling can reveal viable pathways to a sustainable energy system, aiding strategic planning for upgrades and policy-making for accelerated integration of renewable energy generation and smart grid technologies such as battery storage in Africa

    Artificial Intelligence and Machine Learning Approaches to Energy Demand-Side Response: A Systematic Review

    Get PDF
    Recent years have seen an increasing interest in Demand Response (DR) as a means to provide flexibility, and hence improve the reliability of energy systems in a cost-effective way. Yet, the high complexity of the tasks associated with DR, combined with their use of large-scale data and the frequent need for near real-time de-cisions, means that Artificial Intelligence (AI) and Machine Learning (ML) — a branch of AI — have recently emerged as key technologies for enabling demand-side response. AI methods can be used to tackle various challenges, ranging from selecting the optimal set of consumers to respond, learning their attributes and pref-erences, dynamic pricing, scheduling and control of devices, learning how to incentivise participants in the DR schemes and how to reward them in a fair and economically efficient way. This work provides an overview of AI methods utilised for DR applications, based on a systematic review of over 160 papers, 40 companies and commercial initiatives, and 21 large-scale projects. The papers are classified with regards to both the AI/ML algorithm(s) used and the application area in energy DR. Next, commercial initiatives are presented (including both start-ups and established companies) and large-scale innovation projects, where AI methods have been used for energy DR. The paper concludes with a discussion of advantages and potential limitations of reviewed AI techniques for different DR tasks, and outlines directions for future research in this fast-growing area

    Impact of the COVID-19 Lockdown on the Electricity System of Great Britain: A Study on Energy Demand, Generation, Pricing and Grid Stability

    No full text
    The outbreak of SARS-COV-2 disease 2019 (COVID-19) abruptly changed the patterns in electricity consumption, challenging the system operations of forecasting and balancing supply and demand. This is mainly due to the mitigation measures that include lockdown and work from home (WFH), which decreased the aggregated demand and remarkably altered its profile. Here, we characterise these changes with various quantitative markers and compare it with pre-lockdown business-as-usual data using Great Britain (GB) as a case study. The ripple effects on the generation portfolio, system frequency, forecasting accuracy and imbalance pricing are also analysed. An energy data extraction and pre-processing pipeline that can be used in a variety of similar studies is also presented. Analysis of the GB demand data during the March 2020 lockdown indicates that a shift to WFH will result in a net benefit for flexible stakeholders, such as consumers on variable tariffs. Furthermore, the analysis illustrates a need for faster and more frequent balancing actions, as a result of the increased share of renewable energy in the generation mix. This new equilibrium of energy demand and supply will require a redesign of the existing balancing mechanisms as well as the longer-term power system planning strategies

    Major Challenges towards Energy Management and Power Sharing in a Hybrid AC/DC Microgrid: A Review

    No full text
    A fundamental strategy for utilizing green energy from renewable sources to tackle global warming is the microgrid (MG). Due to the predominance of AC microgrids in the existing power system and the substantial increase in DC power generation and DC load demand, the development of AC/DC hybrid microgrids (HMG) is inevitable. Despite increased theoretical efficiency and minimized AC/DC/AC conversion losses, uncertain loading, grid outages, and intermittent complexion of renewables have increased the complexity, which poses a significant threat toward system stability in an HMG. As a result, the amount of research on the stability, management, and control of HMG is growing exponentially, which makes it imperative to recognize existing problems and emerging trends. In this survey, several strategies from the most recent literature developed to address the challenges of HMG are reviewed. Power flow analysis, power sharing (energy management), local and global control of DGs, and a brief examination of the complexity of HMG’s protection plans make up the four elements of the review technique in this article. During critical analysis, the test system employed for validation is also taken into consideration. A comprehensive review of the literature demonstrates that MILP is a frequently employed technique for the supervisory control of HMG, whereas tweaking bidirectional converter control is the most common approach in the literature to achieve efficient power sharing. Finally, this review identified the limitations, undiscovered challenges, and major hurdles that need to be addressed in order to develop a sustainable control and management scheme for stable multimode HMG operation

    A survey of second-life batteries based on techno-economic perspective and applications-based analysis

    Get PDF
    Abstract The penetration of electrical vehicles (EVs) is exponentially rising to decarbonize the transport sector resulting in the research problem regarding the future of their retired batteries. Landfill disposal poses an environmental hazard, therefore, recycling or reusing them as second-life batteries (SLBs) are the inevitable options. Reusing the EV batteries with significant remaining useful life in stationary storage applications maximizes the economic benefits while extending the useful lifetime before recycling. Following a critical review of the research in SLBs, the key areas were identified as accurate State of Health (SOH) estimation, optimization of health indicators, battery life cycle assessment including repurposing, End-Of-Life (EOL) extension techniques and significance of first-life degradation data on ageing in second-life applications. The inconsistencies found in the reviewed literature showed that the absence of degradation data from first as well as second life, has a serious impact on accurate remaining useful life (RUL) prediction and SOH estimation. This review, for the first time, critically surveyed the recent studies in the field of identification, selection and control of application-based health indicators in relation to the accurate SOH estimation, offering future research directions in this emerging research area. In addition to the technical challenges, this paper also analyzed the economic perspective of SLBs, highlighting the impact of accuracy in second-life SOH estimation and RUL extension on their projected revenue in stationary storage applications. Lack of standard business model based on future market trends of energy and battery pricing and governing policies for SLBs are identified as urgent research gaps

    Smart contracts in energy systems:A systematic review of fundamental approaches and implementations

    Get PDF
    Given the ongoing transition towards a more decentralised and adaptive energy system, the potential of blockchain-enabled smart contracts for the energy sector is being increasingly recognised. Due to their self-executing, customisable and tamper-proof nature, they are seen as a key technology for enabling the transition to a more efficient, transparent and transactive energy market. The applications of smart contracts include coordination of smart electric vehicle charging, automated demand-side response, peer-to-peer energy trading and allocation of the control duties amongst the network operators. Nevertheless, their use in the energy sector is still in its early stages as there are many open challenges related to security, privacy, scalability and billing. In this paper, we systematically review 178 peer-reviewed publications and 13 innovation projects, providing a thorough analysis of the strengths and weaknesses of smart contracts used in the energy sector. This work offers a broad perspective on the opportunities and challenges that stakeholders using this technology face, in both current and emergent markets, such as peer-to-peer energy trading platforms. To provide a roadmap for researchers and practitioners interested in the technology, we propose a systematic model of the smart contracting process, by developing a novel 6-layer architecture, as well as presenting a sample energy contract in pseudocode form and as open-source code. Our analysis focuses on the two mainstream application areas we identify for smart contract use in this area: energy and flexibility trading, and distributed control. The paper concludes with a comprehensive, critical discussion of the advantages and challenges that must be addressed in the area of smart contracts and blockchains in energy, and a set of recommendations that researchers and developers should consider when applying smart contracts to energy system settings.Algorithmic
    corecore